If you have a large, lovely, and productive avocado tree, you will want to be sure to prevent avocado root rot. This disease is commonly caused by overwatering and it is usually fatal to the tree. [By the way, removing large trees is expensive and dangerous.] Avocado root rot is perhaps the most common disease of California’s avocado orchards, but nearly all fruit and nut trees are susceptible, as are azaleas, blueberries, boxwood, camellias, cinnamon trees, conifers, cycads, ferns, lilies, mosses, pineapples, and roses. Avocado root rot also threatens California’s rare endemic Ione manzanita (Arctostaphylos myrtifolia). What causes avocado root rot? Large trees and shrubs use a lot of water. Adding too much water creates habitat for tiny water molds, called oomycetes. Oomycetes are responsible for Phytophthora [Fie-TOF-ther-uh] root and crown rot diseases. This is one of those. The oomycete responsible for avocado root rot is called Phytophthora cinnamomi. The Global Invasive Species Database includes Phytophthora cinnamomi in its list of "100 of the World's Worst Invasive Alien Species". These water molds were originally found only in tropical and subtropical countries. They are now found around the world. Water molds fall between fungi and algae. They fly through the air and exist in waterways and the soil. Normally, they are not a problem. Until environmental conditions are suitable, the oomycetes that cause avocado root rot mostly remain dormant in the soil. Add too much water and spores germinate, producing mycelia or hyphae (tiny vegetative threads) and sporangia (reproductive parts). The sporangia release spores that are small enough to enter a root through the root tip. Once they enter the root, they start absorbing nutrients and carbohydrates, breaking down the root structure and preventing the plant from absorbing water and nutrients. Symptoms of avocado root rot The most common symptom of avocado root rot, or Phytophthora dieback, is wilting. This is a problem because many people respond to plant wilting by adding more water, which is what caused the problem in the first place. Other symptoms include brown edges on leaves, chlorosis (yellowing), collar rot, darkened patches of bark and root tissue, gumming, leaf curl, reduced fruit size, stem cankers, and young shoot dieback. Flagging may also be seen. Flagging refers to the way dead leaves are retained by the plant, rather than allowed to fall. Preventing avocado root rot Proper tree planting depth is the best thing you can do to keep your trees healthy. Other preventive measures include:
Commercial orchards infected with avocado root rot may inject or spray affected trees with fungicides, or resort to soil solarization. These are extreme measures that should be avoided by the home gardener unless absolutely necessary. One thing you can do is cover the area with composted mulch, which suppresses the oomycetes that cause the disease and prevent healthy trees from becoming infected. Or, you can get a load of free arborist chips which will, eventually, compost themselves, preventing disease and improving soil structure. Our story When we bought our place back in 2012, there was a lovely old apricot tree in the backyard. She wasn’t performing very well, however. Upon closer inspection, the tree seemed a little “loose” in the ground. When I gave it a shove, the whole thing fell over! The root system was practically gone. Luckily, the tree had been kept at a manageable size and no one was hurt. I decided to use the trunk to create a stumpery and plant a new apricot tree. We later learned that the sprinkler system was pointed directly at the tree, creating a recipe for disaster. While you may not be able to eliminate the oomycetes that cause avocado root rot from your property, you can control the conditions that allow them to cause harm.
0 Comments
Measles on fruit, leaves, or stems can mean many different things, but it is not the human measles virus. Measles on plants can indicate fungal diseases that may look like anthracnose. Measles can also be a symptom of nutrient toxicities or an overabundance of irrigation water. Grape measles If it looks as though your grapes have measles, it may be black measles, also known as esca or Spanish measles. Grapes infected with black measles develop small, reddish-brown spots on the fruit. These spots may appear at any time during the growing season. Ultimately they will cover the fruit, causing it to turn black and shrivel. If you were to eat these grapes, they would taste bitter. Leaves develop a characteristic ‘tiger stripe’ pattern in which the veins of white grapes remain green, haloed with yellow, and surrounded with dead, brown tissue. Red and purple cultivars develop reddish areas instead of yellow. Other symptoms include shoot tip dieback and complete defoliation. Also, cut wood tends to ooze a dark sap, and cross-sections show dark streaking in the xylem. Infected plants are highly susceptible to other fungal diseases, particularly rots. Black measles is an infection by a collection of fungi, including Phaeoacremonium aleophilum and other subspecies, Phaeomoniella chlamydospora, and Fomitiporia mediterranea. Fungal spores enter plants through pruning wounds and natural cracks in the bark. Symptoms do not appear every year and seem to worsen in years with heavy rains. When a particularly bad measles infection occurs, it is called apoplexy. Apoplexy is nearly always fatal. There are no effective treatments against esca other than removing infected fruit and crossing your fingers. Otherwise, remove the plant and start over. While there are no immunizations against plant measles, providing good airflow and sanitizing your cutting tools with a household cleaner will go a long way toward protecting your plants against measles. Also, get your bare root stock and scions from reputable sources. Measles as a symptom of nutrient toxicity Measles can also indicate nutrient toxicity. Brown freckles on apples or pears may be a characteristic of the cultivar or indicate toxic levels of manganese in the soil. Apple measles creates round to oval concentric circles or lesions on the bark. The only way to know if there are toxic levels of nutrients (or heavy metals) in your soil is with a lab-based soil test. Measles and irrigation
Smooth-skinned cucurbits, such as crookneck squash, cucumbers, summer squash, melons, and pumpkins, are all susceptible to entirely different forms of measles. Small brown spots may be visible scattered over the surface but do not penetrate the fruit. These spots may also occur on leaves or stems. Unlike the viral infections and nutritional toxicities mentioned above, cucurbit measles are a physiological response to high soil moisture. When plants absorb too much water, they sweat it out. Healthy soil is teeming with microscopic life. Most soil organisms are beneficial, but some of them carry diseases. The biggest problem with soil-borne diseases is knowing they are there. You can’t see the pathogens, so damage can occur before you know anything is wrong. Also, symptoms of soil-borne diseases can look a lot like nutrient imbalances, chemical overspray, and poor environmental conditions. Fungi and nematodes are behind most soil-borne diseases, but other conditions are at play, and some discoveries are new. Nematodes Nematodes are microscopic, unsegmented worms. Some of them are beneficial, and some carry diseases. Beneficial nematodes kill cutworms and corn earworm moths. Disease-carrying nematodes include needle nematodes, root-knot nematodes, and stubby root nematodes. The real problem with nematodes is that there are so many of them. For every person on Earth, there are approximately 60 billion nematodes. [Thank goodness they aren’t all bad!] Bacterial diseases Bacterial diseases are less likely to be soil-borne because it is difficult for bacteria to survive in the soil. Also, they need a wound or natural opening to get inside your plants. The following soil-borne diseases can occur in your garden:
Oomycetes Oomycetes used to be considered fungi but are now a separate class. Oomycetes cause soil-borne diseases such as damping off, downy mildews, late potato blight, some root rots, and sudden oak death. Phytomyxea
There is another class of soil-borne disease carriers called Phytomyxea [FI-toe-muh-kia]. Scientists used to think they were a type of slime mold, but genetic testing and electron microscopes have taught us that they are a unique group. Phytomyxea are plant parasites that can cause clubroot in cruciferous vegetables and powdery scab in potatoes. Viral diseases Soil-borne viral diseases are rare. In most cases, nematodes and certain fungi carry these pathogens. Lettuce necrotic stunt and wheat mosaic, which causes stunting and mosaics in wheat, barley, and rye, are two common soil-borne viral diseases. How to prevent soil-borne disease In nature, plant diseases rarely get out of hand. Plants’ defense mechanisms and other organisms keep most pathogens in check. But, when we select plants, spray chemicals, and disturb the soil, we interrupt those natural processes. The primary cause of soil-borne diseases taking hold is an imbalance in soil populations. Reduced biodiversity gives pathogens the upper hand. One way to reintroduce that biodiversity is by top dressing with aged compost. Research has shown that top dressing with compost is very effective at suppressing soil-borne diseases in greenhouses, though less so in the field. There is a direct correlation between how much compost was applied and its effectiveness. Interestingly enough, sterilized compost is less effective. I think we can assume the effect is at least partially biological. As with most diseases, three factors must be present for a problem to occur: the host plant, the pathogen, and the right environmental conditions. Remove any one side of the disease triangle, and the disease is prevented or controlled. Crop rotation is an excellent way to break this disease triangle. Your rotation schedule will vary depending on the plants and pathogens in your garden. While you can sometimes apply treatments directed toward specific pathogens, they don’t always work. Most of these treatments consist of other microorganisms that prey on the pathogens. These only work if your soil already has everything the introduced microorganisms need. The funny thing is, if all those things were already there, so would the predators. Biodiversity. Mycorrhizal fungi (good guys) often create protective mats containing antibiotics and pathogenic toxins around plant roots. They also help plants absorb nutrients. Use these tips to prevent soil-borne diseases in your garden:
Finally, as tempting as they may be, chemical treatments are rarely a good choice for backyard gardeners. Pathogens are developing resistance to these treatments. Increasingly powerful chemicals are applied, resulting in a dangerous escalation. Whenever possible, use some other method of controlling soil-borne diseases. Cedar chests repel moths. Adding pencil shavings to potted plants repels or kills insect pests, such as ants, carpet beetles, cockroaches, fleas, mosquitos, moths, spiders, and termites. At least, that’s what they say. Can we really use cedar as an insect repellent? It sounds (and smells) so nice… Let’s start by learning a little more about what we mean when we use the word cedar. Cedar wood Cedar is a conifer. The word ‘cedar’ refers to any of five Cedrus trees, all of which produce oils said to repel moths whose larvae eat fabrics, such as wool. These are ‘true cedars’, none of which are native to North America. Other trees lumped together with Cedrus are the Thuja, or cypress trees, three of which are native, and a few juniper trees. Cedar, cypress, and some junipers do contain chemicals, known as terpenoids, which are used to protect themselves against insect pests. The terpenoids used by cedar and cypress are not the same, however. Cedars use terpenoids called sesquiterpene hydrocarbons, while cypress and juniper use something called thujone. Thujone is also found in common sage, some mint species, mugwort, oregano, tansy, and wormwood. In both cases, some insects are repelled while others are not. Insects and cedarwood oil Your grandmother was right about her cedarwood hope chest - it really does repel clothes-eating moths. It does nothing, however, against fleas, mosquitos, spiders, and most ants. In its defense, if you have ordorous or Argentine ants, cedarwood oil will help keep them away. It will also repel or kill carpet beetles, cockroaches, and termites, none of which are a threat to your plants. Dangers of cedarwood
Before you jump on the cedarwood oil bandwagon, however, you need to know that there is a downside. Research has shown that, while exposure to cedar wood oils can interrupt the reproductive and developmental cycles of peanut trash bugs, Indian meal moths, and forage mites, prolonged exposure to these oils increases your chances of getting cancer. Strangely enough, European turnip moth larvae love eating cedar. Isn’t life weird? Your tree may house a tiny, fungi-farming beetle called the polyphagous shot hole borer, but I hope not. Native to southeast Asia, these invasive beetles are threatening trees in Israel and California with Fusarium dieback. Fusarium dieback is a fungal disease that blocks the flow of water and nutrients through a tree’s vascular system. And polyphagous shot hole beetles actively farm those particular fungi. We will get to that in a minute. Polyphagous shot hole borer identification Polyphagous shot hole borers (Euwallacea fornicatus) are smaller than a sesame seed. You could fit 6-10 females, end-to-end, across a dime. Females are black and males are brown and wingless, but you will probably never see a male. Sightings are rare and no wonder. Males stay in the galleries and you could fit 12-18 of them across the face of a dime. Polyphagous shot hole borers look identical to another invasive borer called the Kuroshio shot hole borer, or tea shot hole borer (Euwallacea fornicatus). The tea shot hole borer prefers tea plants in Sri Lanka, while the polyphagous shot hole borer appears to have a voracious appetite for over 110 tree species. [The word polyphagous means eats many things.] Host trees and signs of infestation Traditionally, polyphagous shot hole borers tended to only infest dead or dying trees. Having been accidentally introduced to new regions, these pests have developed a taste for healthy trees. Once trees are infected, they can die. Host trees include:
External symptoms of infestation often look innocuous. Slightly weepy, small damaged areas of the bark, the presence of white frass, maybe a little sawdust or sugar volcano action is all you can see from the outside. If you look very closely, you may see several exit holes, about the size of the tip of a ballpoint pen. The inside of an affected tree is something else entirely. Polyphagous shot hole borers chew holes that penetrate 1/2” to 1-1/2” into the wood. Then they start burrowing, creating galleries. Black flecks and tunnels can be seen throughout an infested tree. These black areas indicate where Fusarium fungi are being farmed. Polyphagous shot hole borer as farmers
Polyphagous shot hole borers are a type of ambrosia beetle. Rather than feeding on bark or wood or sap, ambrosia beetles eat fungi that they grow for themselves. Polyphagous shot hole borers have tiny pockets on their exoskeleton. In these pockets, they carry spores of the Fusarium euwallaceae fungi. After burrowing into a tree, the borer starts growing these fungi along the walls of the burrowed galleries. The fungi provide adult and larval forms of polyphagous shot hole borers with food in a protected environment and the borers carry the fungi to new trees. It's a win-win situation for them. The problem is, this fungi causes Fusarium dieback. Fusarium dieback causes branch dieback, canopy loss, and it can kill trees. Polyphagous shot hole borer management Yellow sticky cards, purple prism traps, and multiple funnel traps have been used with some success. Because polyphagous shot hole borers have no natural enemies here in California, and because they live inside the tree, safe from insecticides, prevention is worth the effort. Polyphagous shot hole borers are most commonly spread on firewood. If infested trees are chipped into mulch, the borers can catch a ride to your trees, so always inspect wood chips before accepting them. Wood chips cut into pieces smaller than 1” are generally considered safe because the borers get chopped up too. Personally, if I saw black galleries, I would refuse delivery just in case. If you suspect polyphagous shot hole borers have found your trees, please contact your local County Extension Office right away. Conks are woody, shelf-like structures produced by some fungi. These fruiting bodies are often seen on trees and can indicate fungal diseases, such as canker rot or butt rot. Polypores Conks are the reproductive form of a large group of fungi known as polypores. Polypores are found in the bark, trunks, and branches of trees, though some are in the soil. Polypores are the primary players in wood decomposition, so their presence often indicates decay. Polypores are important in nutrient cycling, so they aren’t all bad. This group is large and diverse, but they all have conks in common. The conk clan This group is defined by how they grow rather than genetics, so it is very diverse. The most common types of conks include:
Conk structure Also known as bracket fungi, or shelf fungi, this group (Basidiomycota) produces circular, shelf-shaped fruiting bodies that can appear in rows, columns, or singly. Basidiomycetes are the only fungi known to break down lignin. Lignin is what makes trees rigid. The disease that accomplishes this feat is known as white rot. Some conks are annuals while others are perennials, Some conks can live for 80 years or more. In either case, they tend to be leathery, sturdy growths. These growths produce spores, called basidiospores, in pores found on the underside of the conk. Conks grow directly out of the wood on which the fungi feed. If you were to cut one open and look at it closely, you would see two layers: a tube layer and a supporting layer. The tubes are honeycomb-like structures lined with a spore-forming surface called the hymenium. The supporting structure creates the shelf and its attachment to the tree. The problem with conks is that their presence indicates that fungi have taken up residence in your tree. If your tree has conks, the first step is identifying the type. Some fungi are worse than others. Preventing fungal conks The fungi that produce conks enter trees through mechanical wounds, damaged roots, broken or rubbing branches, frost cracks, sunburned bark, and improper pruning cuts. Fungal spores travel on the wind, rain, and on birds and insects, so keeping your tree’s protective outer layer intact is the best prevention. The following tips should help with that:
If you have a tree with conks, you should probably contact a certified arborist. They can inspect the tree for structural integrity and to determine the extent of the infection.
Conks may look cool, but you don’t want them on your trees. Can you see a crack in the trunk or branches of your tree? It may be canker rot. Canker rot is a collection of fungal diseases that eat away at the interior of tree trunks and branches, weakening the tree and setting the stage for other pests and diseases. Canker rots can also girdle your tree and kill it. While most commonly seen in ornamental trees, canker rot can occur in apple and other fruit and nut trees. Canker rot identification Cankers are open wounds or lesions. Cankers can be a few inches long and wide or several feet long, depending on the fungal species. The bark surrounding these cankers dies, becoming discolored, often lighter or orangish. And it is tightly bonded to the canker. After a year or two, the dead inner bark turns black and stringy. It may look like a sooty bark canker. But canker rot can also have lens-shaped lighter areas in the bark. Unlike other canker diseases, canker rot affects both bark and inner tissue. Canker rots can also cause swelling, sunken areas, gnarled bark, and conks. Conks are shelf-shaped fungal fruiting bodies. After spores are released, the conk will dry out and darken. It may remain on the tree or fall off. If you were to see inside your tree, you would see that the heartwood and sapwood have become discolored. Instead of warm, rich yellowish-browns of healthy wood, you would see gray, orange, or even pink-tinged wood, often extending three or more feet beyond the canker. Canker rot lifecycle The fungi responsible for canker rot usually enter trees through pruning cuts and wounds. Fungi attach to the wood and then move to the cambium to access the water and nutrients flowing through the vascular bundle. The fungi also move to the bark, where they eject spores carried by wind to nearby trees. How to control canker rot As always, healthy trees are better able to protect themselves. So, select species suitable to your microclimate, plant them at the proper depth, irrigate and fertilize your trees properly, and monitor for signs of problems. Other actions you can take to reduce the chance to canker rot occurring in your trees include:
Trees with canker rot may fall over at any time. Large trees weigh several tons and can be extremely dangerous. If you suspect canker rot, call a licensed arborist right away.
Prune limb borers can damage stone fruit trees, such as almond, apricot, cherry, nectarine, and peach, as well as oak. Gumming and reddish orange frass are common signs of prune limb borer infestation. Prune limb borers (Bondia comonana) are not as common as American plum borers, but it is a good idea to know what to look for, just in case. Prune limb borer description Prune limb borer moths are not very large. They have a 3/4” wingspan. The forewings are gray with black and brown markings. Like many grubs, prune limb borer larvae are dull white or pinkish with a large, dark head. They are usually 1” long. Prune limb borer lifecycle Prune limb borer larvae overwinter inside your trees in cocoons. In spring, adult moths emerge and mate. Female prune limb borers lay their eggs on callus tissue, where narrow crotches between branches create wrinkled bark, near graft unions, and on crown galls. Eggs are also laid in wounds from pruning, tree supports, or poorly aimed weedwackers. There can be as many as four generations each year. Prune limb borer damage It is prune limb borer larvae that do all the damage. As soon as eggs hatch, larvae begin burrowing into the host tree. Erratic tunnels between the bark and cambium layer interrupt the flow of water and nutrients and weaken the tree structurally. Heavy infestations can weaken scaffold branches, making them likely to break off in strong winds and when supporting heavy crop loads. Prune limb borer management
Mature, healthy trees can often withstand a prune limb borer or two, but young trees can be killed by heavy infestations. Like other borers, these pests are easier to prevent than control. Inside the tree, they are safe from predators and pesticides. Use these tips to prevent prune limb borers from taking up residence in your trees:
Over-the-counter pesticides and insecticides are not effective against prune borers. If you have a badly infested tree, it may be worthwhile to hire a professional to apply a residual, contact insecticide. Clearwing moths are a family of pests that attack many fruits trees, as well as currants and gooseberries. These pests are often mistaken for burly wasps. There are several different clearwing moth pests and they attack a wide variety of ornamentals and edibles. They include:
Clearwing moth identification and lifecycle One of the most obvious ways to identify adult clearwing moths is to look at their wings - they are clear. Mostly, anyway. Adults only live for one week, so you don’t get many chances to see them. Front wings tend to be narrow and rear wings are stubbier and wider. Their yellow and black bodies look similar to yellowjackets. This mimicry continues with a behavior commonly seen in wasps, in which both species will periodically run while fluttering their wings. Unlike wasps, clearwing moth adults can also be red, orange, or even dark blue, depending on the species. As soon as females emerge from their pupal cases, they emit pheromones to attract males. After mating, females lay tiny pale pink to reddish eggs in rough areas of the bark, in wounds, and in cracks and crevices created where branches and twigs fork. One to four weeks later, larvae emerge and the damage begins. Clearwing larvae are 1” to 1-1/2” long, with white to pink bodies and dark heads. They look very similar to American plum borer larvae. Larvae will feed heavily until they are ready to pupate. Most clearwing moths pupate under bark. The peachtree borer pupates in the soil. Clearwing pupal cases also look a lot like American plum borer pupae, as well as carpenterworm pupae. American plum borers (Euzophera semifuneralis) tend to be found where main scaffold branches join the trunks of ash, olive, and sycamore trees. These pupal cases are thin-walled and brown, and they look very similar to those of bark beetles, longhorned beetles, roundheaded wood borers, flatheaded wood borers, and metallic wood borers. These pupal cases are often found, after they have been vacated, protruding from bark or on the ground under a tree. Basically, anything burrowing in your trees is bad news. Damage caused by clearwing moths Clearwing moth larvae start burrowing into bark, cambium or heartwood of their host tree as soon as they hatch. This burrowing creates galleries that weaken the tree and make it more susceptible to other pests and diseases. It also interrupts the flow of water and nutrients throughout the vascular tissues. Branch die off can also occur. All this burrowing can make bark look gnarled. Where these galleries occur can help you identify the species. Peachtree borer larvae are most commonly found within a few inches of the soil. Ash borer larvae prefer being 5 to 10 feet up. Clearwing controls In some cases, no controls are needed. Sycamore borers and western poplar clearwings apparently don’t do enough harm to require management. The other species, however, can serious harm your trees. Since healthy trees are better able to withstand attack, proper feeding and irrigation go a long way toward minimizing clearwing damage. Whitewashing tree trunks and exposed branches reduces sunburn injury. If your soil is compacted, apply a thick layer of mulch or install a ground cover to help aerate the soil. This will help keep your trees healthier, just make sure the mulch or ground cover are kept a few inches away from the trunk to prevent fungal disease. Also, avoid injuring trees with lawn mowers, weed wackers, and other landscape equipment and tools, and remove tree stakes as soon as they are no longer needed.
Pheromone lures can be used to monitor for these pests. Just keep in mind that using pheromone lures attracts pests. These lures interfere with mating, so they can reduce clearwing populations, but this method requires an intensive, ongoing program of pheromone use. It’s probably not worth the effort for backyard trees. You can also buy pheromone traps for peachtree borers and ash borers. If using pheromone traps, be sure to follow the manufacturer’s directions exactly. Monitoring trees every week for signs of burrowing and pupal cases is an easy way to protect your trees. You may see partially emerged pupae, which can be crushed or skewered with a piece of wire. Gumming around the base of the tree may also indicate peachtree borers. Beneficial insects, such as braconid wasps, will kill or parasitize clearwing moths and their larvae, so avoid using broad spectrum pesticides and insecticides. Also, you can buy certain nematodes (Steinernema carpocapsae and S. feltiae) to kill peachtree borer, redbelted clearwing, sycamore borer, and western poplar clearwing. Again, follow the directions exactly for the best results. If a truly valuable tree has a bad clearwing infestation, you should call a licensed pest control applicator. They have access to chemicals that you do not. Most over-the-counter clearwing controls are not effective. Whether you call them chickpeas, Bengal grams, Egyptian peas, or garbanzo beans, you definitely do not want them infected with this fungal disease. Ascochyta [ask-uh-SHOO-tuh] blight, also known as blackspot, is a major disease of garbanzo beans. Not to be confused with the other black spot (Diplocarpon rosae), which primarily affects leaves, Ascochyta blight can infect any aboveground portion of your chickpea plants, as well as your lawn. Lawns infected with Ascochyta blight suddenly develop brown patches of dead-looking grass. Ascochyta blight is caused by Ascochyta rabiei (formerly known as Phoma rabiei). Ascochyta blight symptoms Brown lesions that start at the base of seedlings may start out looking like damping-off disease, but these lesions continue to move up the plant, eventually affecting everything aboveground. Infection may also first appear on leaves and work its way elsewhere on the plant. Foliar infections start out as light brown spots. Once the fungi start reproducing, you will be able to see tiny black, raised dots within these brown spots. These black dots will appear in circles of their own. Stem lesions can cause the plant to fall over. Pod lesions reduce seed production and can cause seed shrinkage and discoloration. Ascochyta blight lifecycle In California, garbanzo beans are generally planted in November. This sets them up for Ascochyta blight because the spores grow best in cool, damp weather. Temperatures between 68°F and 77°F are ideal for this disease to develop. There are different forms of this fungi. One form is airborne, while the other is spread by rain and irrigation water. When these two forms meet under optimal conditions, the disease begins. Ascochyta blight management
Ascochyta blight can be spread by infected seeds, so always start your garbanzo bean crop with certified disease-free seeds. Do not use that bag of garbanzo beans from the grocery store. The price might be appealing and those seeds are safe to eat, but they may also carry any number of pests and diseases that might take years to get rid of. You can also select disease resistant varieties. According to UCANR, the following varieties of garbanzo are currently resistant to Ascochyta blight: Sierra, Dylan, Sutter, San Joaquin, and the Airway Farms (AWF) series. That resistance can and will change because fungi evolve faster than plants. At the first sign of infection, the affected plant should be removed and tossed in the trash. You don’t want to leave infected plant material in the garden or compost pile because this can simply spread the disease to more plants. Ascochyta blight does not survive in the soil, so crop rotation is a good way to break the disease cycle. If Ascochyta blight has been a serious problem in past years, space plants out more for better air flow, and plant seeds as late in the season as possible. Fungicides can be used at the first sign of disease and reapplied according to package directions. Insect pests can damage garden plants by feeding on them, burrowing into them, or by carrying diseases. Ants, aphids, scale insects, mites, thrips, psyllids… the list never seems to end! Practically any time of year, one sort of insect or another is trying to take a bite out of your garden plants. If that weren’t bad enough, many of these pests spread diseases as they feed and travel around. There isn’t a gardener alive who hasn’t wished for an easy solution to the constant onslaught. But easy solutions often backfire and insecticides are a perfect example. How insecticides work Insecticides are formulated to repel, kill, or otherwise harm insects. These agents are classified as either systemic or contact insecticides. Systemic insecticides are absorbed by the plant, making it toxic to anything that eats it. Systemic insecticides have residual, long term actions, while contact insecticides have no residual actions. Contact insecticides simply have to come into contact with an insect to be toxic. The mode of action by which an insecticide works is important as it determines which other living things may be affected. Some insecticides work by damaging an insect’s nervous system, interrupting feeding and reproductive behaviors, while other insecticides attack the exoskeleton. A damaged exoskeleton allows insects to dry out, causing death by desiccation. Growth regulators (e.g., pyriproxyfen, methoprene) stop insects from molting or laying eggs. Ovicides kills eggs. Larvicides kill larvae. Insecticides also come in several forms: sprays, dusts, baits, and gels. Depending on which form you use and how you use it, the poisons intended for pests can harm pets, people, and the environment. Insecticides can be repellent or non-repellent. Repellents discourage insects from bothering a plant in the first place. Non-repellents are especially effective against social insects, such as ants. Being a non-repellent, the insecticide is not offensive to the pest, so they walk through it and end up carrying it back to their nest, ultimately killing the entire colony.
Types of insecticides There are three basic types of insecticide: natural, inorganic, and organic. Natural insecticides are enzymes and other protective substances made by plants as part of their arsenal against insect pests. These natural insecticides include nicotine, neem, and pyrethrum. Pyrethrum is made from the dried flower heads of two chrysanthemum species: Chrysanthemum cinerariifolium and Chrysanthemum coccineum. Other natural insecticides include the chemical that gives horseradish its fiery bite, rosin, and wintergreen. Inorganic insecticides are made from metals. Organic insecticides are organic chemical compounds that are generally work by making contact with an insect. The problem with insecticides Being poisons, insecticides can affect our health, as well as kill insects. Insecticides can also remain in the food supply, increasing in concentration as they move up the food chain. This is important because we are at the top of our food chain. [It is a lot like mercury in fish.] Many of these problems can be reduced or eliminated by understanding the different types of insecticides and using them responsibly. Broad-spectrum insecticides Like weedkiller sprays, broad-spectrum insecticides are very appealing. A problem appears. You spray it. The problem is gone. Fantastic. Except that the problem is not gone. In fact, the problem just got worse. By spraying broad-spectrum insecticides, all insects are affected. Beneficial predatory insects, pollinators, burrowing soil arthropods, and our beloved honey bees are all subject to the same poisoning. There are several type of broad-spectrum insecticides, in order of toxicity, all of which interfere with nerve cell transmissions:
Educate yourself about ingredients Before applying insecticides, you can protect yourself and the environment by learning more about the ingredients. For example, some beneficial insects, such as lacewings, are tolerant of pyrethroids, while beetles, parasitic wasps, and predatory mites are very sensitive to the same chemicals. You should also ask yourself how long the ingredients of any particular insecticide will remain in the environment. Insecticides are commonly grouped by persistence: short (days), intermediate (up to 6 weeks), or long (months). Finally, are insects developing a resistance to an insecticide? If so, it should be avoided and another product used. Reducing risks associated with insecticides Before resorting to the use of insecticides, be sure you have done the following:
In many cases, it is against federal law to use insecticides improperly, and for good reason. As quickly as insects can reproduce, it often feels like a losing battle. This is what makes the use of modern insecticides so appealing. Insecticides are an easy way to kill insects. But not all insecticides are safe to use on edible plants. And many insecticides interfere with the delicate balance that exists in a healthy environment. Knowing more about the different ways insecticides work, and how and when to apply them properly, can prevent longterm problems while still reducing the damage done to your plants by insect pests. When I first read the name drugstore beetle, I conjured up images of an 1800s mercantile being harassed by a gunslinging beetle wearing spurs. I have no idea why. The truth is, drugstore beetles (Stegobium paniceum), also known as biscuit beetles or bread beetles, are very tiny and don’t look like much of a threat to anyone. Looks can be deceiving. Drugstore beetles got their name because, until relatively recently, most drugstore pharmaceuticals were made out of dried plants. Drugstore beetles have also been known to feed on chemicals, such as strychnine, once commonly found in drugstores. Drugstore beetle description Being brown and covered with microscopic hairs, drugstore beetles look similar to cigarette beetles, but are somewhat larger at 1/8” (3.5mm) in length. Also, where cigarette beetles have smooth bodies and serrated antennae, drugstore beetles have longitudinal grooves along the elytra (wing cases) and antennae that end with three tiny segmented clubs. Drugstore beetle larvae are white grubs with very fine hairs. Drugstore beetle lifecycle
Female drugstore beetles can lay up to 75 eggs at a time, and the egg-laying season can last for months. That works out to a tremendous number of offspring. Those eggs are usually laid in dried foods, such as cereals, dried fruit, grains, herbs, and nuts. Eggs may also be found in dried meat, hair, wool, and candy. As those eggs are laid, they are covered with a yeast fungus. This fungi and the beetles cannot live without each other. This is an example of obligatory symbiosis. In less than two months, larvae pupate into adulthood, protected by tiny cocoons, and the cycle begins again. Damage caused by drugstore beetles After the eggs hatch, it is the larvae that cause damage by burrowing through and feeding on a wide variety of materials. They also leave frass (big poop) and webbing behind, as well as stray hairs and secretions. Drugstore beetle larvae love dried plant products, such as cereals, beans, pasta, rice, bread, flour, and spices. Apparently, paprika and chili powder are drugstore beetle favorites, though they will eat practically anything. Larvae are also commonly found in tea, potpourri, tobacco, wreaths, and birds’ nests and they have been known to damage books, leather, hair, and museum specimens. In the garden, drugstore beetles are a major pest of cumin. Drugstore beetle control Drugstore beetles are often carried into the home, garden, or landscape in bulk items, such as grass seed, bird seed, or dry pet food. They may also hitch a ride on packaged food. This is why it is important to look for holes in food packaging and avoid those products. While adult drugstore beetles do not eat, they often chew holes in plastic, foil, and paperboard food packaging. You may also see pockmarks in crackers and pasta. Inspecting foodstuffs and bulk items before you bring them home can prevent infestation. When bringing crops, such as beans and other seeds, into the home., it is a good idea to freeze them overnight to kill any larvae that may be lurking. This is an easy way to keep your home from becoming infested. Diatomaceous earth (DE) can also be used lightly in areas where drugstore beetles may be lurking. Pheromone traps and insecticides are not effective against drugstore beetles. When gooseberry and currant growers find hollowed out, discolored berries that fall off early, it is time to look closely for other signs of invasive gooseberry fruitworms. Gooseberry fruitworms are the larval stage of the gooseberry moth (Zophodia convolutella). This insignificant looking moth can cause significant damage. Gooseberry moth description Adult gooseberry moths are gray with a 1” wingspan. You may be able to see a white fringe on the back of the rear wings, and white horizontal stripes on the forewings, as well as a brown spot. More often, all you will see is a small, narrow-bodied grayish-brown moth. Larvae are 3/4” long. At first, they are a pale green. As they mature, the head turns brown and dark stripes can be seed down the sides of the body. Sadly, I was unable to track down a photo. Please share one in the Comments if your berries have been so afflicted. Gooseberry moth lifecycle
Adult moths lay eggs on currants and gooseberries. When the eggs hatch, larvae burrow into the fruit and begin feeding on the pulp. This discolors the fruit and causes it to drop prematurely. A single larva will feed on several berries. Berries may be held together by a silken thread. There is usually only one generation each year but, being invasive insects, the lack of natural predators may cause that to change. Gooseberry moth controls Handpick and destroy any larvae you see, or feed them to your chickens. Bacillus thuringiensis and spinosad can also be used against these pests. Treatments should be applied when fruit is first developing and again 10 days later. Small black spots on tomatoes and tomato leaves often indicate bacterial spot. Those black spots might not look like anything important, but this bacterial disease can also affect peppers, eggplant, groundcherries, and tomatillos, along with your tomatoes. Close cousin to the bacterial spot of almonds and practically impossible to differentiate from bacterial speck without a microscope, bacterial spot (Xanthomonas campestris pv. vesicatoria) is perfectly capable of killing your tomato plants. Bacterial spot symptoms Symptoms of bacterial spot can appear on all life stages, from seedlings to mature plants, and on all aboveground plant parts. Bacteria enter through wounds and stoma. Infected younger plants can be completed defoliated by bacterial spot. Older plants exhibit insignificant looking water-soaked areas on mature leaves, usually near the bottom of the plant. making it easier to dismiss this disease. This would be a mistake. Closer inspection of these lesions shows that they start out yellow or light green, turning dark brown or black. Older spots may be raised areas that average 1/3” across. Larger damaged areas may be seen at the margins (leaf edges). Immature fruit can also be affected by bacterial spot. Bacteria enter through tiny hairs, called trichomes. Infected areas start out looking like tiny raised black dots which then become sunken or dimpled, and surrounded by a white halo, similar to bacterial canker. The halos eventually disappear as the spots get larger and become scabby. These fruits, if they are able to mature at all without rotting on the vine, are still edible. Simply cut out the diseased areas. Just be sure to dispose of the infected parts in the trash. Do not add them to your compost pile.
Controlling bacterial spot Because these bacteria overwinter in infected plant debris, you can protect next year’s crops by clearing infected plant tissue out of your garden completely each fall. The disease can also appear on volunteer tomato plants, so watch rogue tomato plants closely for signs of infection. Splashing rain, irrigation water, and contaminated tools can also spread the disease, so avoid overhead watering and be sure to sanitize your garden tools regularly. Since these bacteria need humidity and water droplets to survive, pruning for good air flow can go a long way toward preventing this disease. If you are like me and save seeds from each year’s crops, be sure you don’t use seeds from an infected plant, as you will be perpetuating the disease. As always, only buy certified disease-free plants and seeds and always quarantine new plants. Fixed copper sprays can be used in areas where bacterial spot has been a significant problem, although there have been some cases of copper-resistant bacteria. Crop rotation can also be used to break this disease triangle. Protect next year’s crops by tossing plants infected with bacterial spot into the trash and providing good air flow around future plants. If you grow raspberries, you should be on the lookout for spur blight. Blackberries and other bramble fruit are not affected by the Didymella applanata fungi, but red raspberries are especially vulnerable. Currently found most often in Scotland, Oregon, and Washington, spur blight can significantly reduce your raspberry crop. Spur blight symptoms Spur blight first appears in mid to late summer. Initial symptoms of spur blight look similar to anthracnose, fireblight, and cane blight, with brown and purple lesions on leaves, around buds, and on the lower area of stems. These lesions cause buds to shrivel up. By spring, lesions will look ashy gray, and the buds will be weak or dead. Stems that grow from these infected buds will be wilted and weak. Infected leaflets have triangular-shaped brown areas and may fall off, leaving the petiole (leaf stem) in place. You might also see dead spots on the canes near petioles. This infection causes premature leaf drop, which weakens the plant overall. As the blight progresses, splits and cracks may form in the bark. Look closely to see tiny black dots emerging from those cracks. Those dots are fungal fruiting bodies called pycnidia. If you look at pycnidia with a microscope, they are flask-shaped. A different type of fruiting body, perithecia, comes next. Perithecia are also black, but they are medium-sized and, if you watch, erupt with spores.
Spur blight lifecycle Spur blight spores travel in wind, rain, and irrigation water. These spores are released each time wet weather occurs, even if that wetness is your garden hose. Infected water that lands on or near young canes, newly forming buds, leaves, wounds, or stomas, can result in infection. Once inside, this disease spreads throughout the plant, overwintering inside the lesions. How to manage spur blight Proper sanitation and pruning methods will go a long way toward preventing spur blight on your beloved raspberries. In late winter or early spring, before new canes emerge, remove all dead, diseased, or weak canes and put them in the trash rather than the compost pile. Keep canes properly spaced for good airflow, and train them up trellising to allow canes to dry quickly. It makes watering your raspberry plants at ground level easier, too. Keep weeds away, as they compete for water and nutrients and reduce airflow around the canes. Unless a lab-based soil test has indicated a need for fertilizer, avoid feeding your raspberry plants when spur blight is a problem. The presence of too many nutrients causes plants to produce an abundance of vulnerable tissue. As always, only buy certified, disease-free plants and place new plants in quarantine. In the case of severe infection, fixed copper or lime sulfur treatments may reduce lesion size and control internal infection, but only if applied when new shoots are 8-10” long. Spur blight is easier to prevent than treat. And raspberries are worth the effort. Avocado lace bugs, also known as camphor lace bugs, can cause problems on avocado, red bay, and camphor trees, along with azaleas and rhododendrons. Native to Florida, Texas, the Caribbean, French Guyana in South America, and eastern coastal Mexico, avocado lace bugs (Pseudacysta perseae) are not a serious problem when found in small numbers. Or where they have no natural predators. Avocado lace bug description Avocado lace bugs get their name because of the lacy venation of their wings, but the way they protect themselves with a lacy cover as they hide on the underside of leaves but be another good reason. That cover is actually the avocado lace bug’s thorax and forewings. Avocado lace bugs are only 1/16” to 1/12” long, brown, orangish, or black and oval-shaped. They tend to cluster together, creating what looks more like a messy fungal growth than an insect colony. If you look closely, with a hand lens, you would see that avocado lace bugs have a black or brown head or thorax, with white, orange, or brown legs, wing covers, antennae, and abdomen. Avocado lace bug nymphs are dark and spiky, with pale legs and antennae. Eggs look like sprinkled black pepper even though they are actually oblong and yellow. The black color comes from the fact that these tiny oblong eggs are smeared with what looks like poop. Avocado lace bug lifecycle
Yes. That’s what I said. Poop. Female avocado lace bugs lay their eggs and then smear the area with a sticky, tar-like substance that looks like poop. Under that protective layer, nymphs molt 5 times as they grow before emerging as adults. Avocado lace bugs have several generations each year and all developmental stages can be present at any one time. Avocado lace bug damage Avocado lace bugs are sap suckers. As such, they pierce the underside of leaves and siphon away nutrient rich fluids. This feeding, while trivial in small numbers, can cause stippling. As feeding progresses, other symptoms appear, such as leaf tip burn that looks like salt damage, leaf discoloration, and early leaf drop. Large infestations can result in defoliation, sunburn damage, and reduced fruit production. As in any case where plant cells are pierced, this feeding also provides points of entry for fungal diseases, such as anthracnose. Avocado lace bug control Natural predators should keep avocado lace bug populations in check. These beneficial insects include jumping spiders, lacewing larvae, lady beetles, and predatory mites and thrips, as well as parasitic wasps. If avocado lace bug populations reach troublesome numbers, keep your trees healthy with a thick layer of mulch, good drainage, and regular irrigation. Insecticidal soaps are somewhat helpful against avocado lace bugs. Be on the lookout for this pest. If you suspect your tree is hosting avocado lace bugs, contact your local County Extension Office right away. As always, place new plants and bare root trees in quarantine before adding them to your garden. Like other stink bugs, Uhler’s stink bug has a shield-shaped body. Native to North and Central America, Uhler’s stink bugs will damage nectarines, pistachios, and tomatoes, along with seeds, grain, other fruits and vegetables, ornamental plants, legumes, and tree leaves. Uhler’s stink bug identification Uhler’s stink bug (Chlorochroa uhleri) looks a lot like green stink bugs (Acrosternum hilare), which may have a a red, orange, or yellow outer edge, and Say stink bugs (Chlorochroa sayi), which are green with a white border. Uhler's stink bugs tend to be slightly larger than other stink bug species. Uhler’s stink bugs may also turn a dustier green that almost looks tan and the outer band may pale to the point of looking nearly white. Quite honestly, unless you are looking at a beneficial rough stink bug (Brochymena sulcata), you are looking at a pest that should be hand-picked and destroyed. Damage caused by Uhler’s stink bugs
Uhler’s stink bugs eat fruit by piercing the surface and sucking out the sugary sweet juice. At first, those feeding spots may look like tiny, translucent blue-green dimples. If you cut into the fruit, you will see the fruit has turned into grayish white pithy tissue that doesn’t look the least bit appetizing. These pests can also transmit tomato bacterial spot and create points of entry for other pests and diseases. Uhler’s stink bug controls Insecticides are ineffective against stink bugs, but that may be a good thing. Instead of spraying chemicals that kill off beneficial insects, a healthy, biodiverse garden will likely be home to assassin bugs, parasitic wasps and flies, such as the tachinid fly (Trichopoda pennipes) and the Trissolcus basalis wasp, which will parasitize stink bug eggs. Birds, spiders, toads, and other insect eating critters will also help keep stink bug populations down. Your best stink bug management program simply involves walking around and looking for them, hand-picking them and depositing them in a container of soapy water or feeding them to your chickens. You may have to be quick, as stink bugs tend to scramble to the opposite side of a twig or branch if they sense someone is looking for them. You will need to monitor for stink bugs from the time buds emerge until the end of the harvest season. These pests are often found overwintering in common mullein, curly dock, and Russian thistle. If stink bugs have been a serious pest in the past, pull mulch away from fruit trees before green fruit appear. After the harvest, simply push the mulch back into place. Cherry, apple, peach and plum trees are all susceptible to a fungal disease called Cytospora canker. Cytospora canker is a collection of symptoms caused by several species of Cytospora fungi. This disease also occurs on ash, birch, cottonwood, elm, maple, willow, spruce, and other conifers. Some Cytospora fungi are host-specific, while others can infect multiple tree species. Sadly, Cytospora canker can be fatal.
Cytospora canker lifecycle Cytospora canker fungi infect trees and shrubs that are stressed or weakened by injury, frost damage, drought, or pests. Spores enter your garden on wind and rain. Infection can occur at any time of year, but trees are most vulnerable during dormancy. Fungal spores enter through tiny wounds in the roots or bark and begin growing in the xylem and phloem. This fungal growth blocks the flow of water and nutrients. If infection occurs in the trunk, the tree will die. Cytospora canker symptoms The first sign of Cytospora canker is often the random dieback or flagging of tree or shrub branches. You can see long, narrow cankers on infected stems and branches. These fungi grow so rapidly that cankers may or may not be sunken or discolored. You might observe the bark split along the edge of these cankers as the tree tries to defend itself. These cracks allow for the formation of a callus that blocks the fungi from entering the rest of the plant. Sometimes this works, and sometimes it doesn’t. Sometimes, this girdling occurs without any visible cankers. Gumming is another defense trees use. Gumming is when stems and fruit ooze out a sticky sap. If you cut into a diseased stem, you may notice discoloration and a funky smell. If you see tiny black spots, you are looking at the fruiting bodies of the fungi. Cytospora canker prevention and control The easiest way to prevent Cytospora canker is to keep your trees and shrubs healthy in the first place. Healthy plants are less likely to become stressed enough to be vulnerable to infection by fungal spores in the first place. Since drought and flooding are the most common conditions that make trees susceptible to Cytospora canker, regular irrigation during summer and proper drainage in wetter months can prevent infection. These other tips can help you prevent Cytospora canker in your landscape:
Once infection occurs, remove any affected stems and branches by cutting close to, but not damaging, the branch collar. Be sure to disinfect your cutting tools with a household cleaner or ethyl alcohol between each cut. Then apply a fungicide to each cut. Do not use sealants, as these treatments can trap spores and moisture where you least want them. There are no known chemical controls for Cytospora canker, so keeping those trees and shrubs healthy is your best bet. Lily leaf beetles prefer lilies over everything else, but you may find them damaging your potatoes and hollyhocks, as well. The lily leaf beetle (Lilioceris lilii) earns its name by devouring lilies of every shape and size. Native to Europe, this pest made its way to Canada in 1945 and reached the U.S. in 1992. While they may not yet be in your neighborhood, they might. So it’s a good idea to know what they look like and how to control them - just in case.
Lily leaf beetle description The bright reddish-orange wing cover of lily leaf beetles makes them easy to spot. Black legs, head, and antennae stand out in clear contrast against green leaves. Adults average 1/2” long. Eggs are irregularly shaped and laid in rows. At first they are tan colored. Just before they hatch, they turn bright red. Larvae look like tiny brown, orange, yellow, or even greenish slugs with black heads. Lily leaf beetle lifecycle Eggs are laid on host plants, usually on the underside of leaves. After hatching, larvae feed for 2 - 3 weeks before dropping to the ground to pupate in the soil. Adults overwinter in sheltered areas that may not necessarily be near host plants. In spring, they emerge and mate. Each female might lay 250-450 eggs. Damage caused by lily leaf beetles Both adults and larvae feed on buds and leaves. Very often, nothing is left but stems. Lily leaf beetle larvae have a nasty habit of collecting their own excrement on their backs. This is believed to be a defense mechanism. I’ll bet it works, too! Lily leaf beetle control Hand-picking is the best control method. Severe infestations may warrant neem oil or spinosad application. Grapes and pomegranates are under attack by grape mealybugs. Grape mealybug description
Grape mealybugs (Pseudococcus maritimus) are small, white, flat-bodied plant suckers that appear to have a fringed skirt. Grape mealybug lifecycle These pests have two generations each year. Eggs and crawlers overwinter under bark and in crevices. In spring, they emerge and begin converging on young shoots, where they start to feed. Those early risers then return to the safety of the bark, where they lay more eggs. Damage caused by grape mealybugs Clustered grape mealybugs can open Pandora’s box to fruit rot and other diseases. How to manage grape mealybugs Natural predators, such as the predaceous gall midge (Dicrodiplosis californica) and the little brown mealybug destroyer (Scymnobius sordidus) can keep these pests under control, so avoid broad spectrum pesticides. If chemical treatments are absolutely necessary, Applaud has been found effective. |
Welcome!You can grow a surprising amount of food in your own yard. Ask me how! To help The Daily Garden grow, you may see affiliate ads sprouting up in various places.
You can also get my book, Stop Wasting Your Yard! Index
All
Archives
September 2023
|