Boron isn’t nearly as boring as it sounds, once you know what it does for your plants. Members of the cabbage family use a lot of boron, while peas and beans, peppers, and sweet potatoes need very little. Before you start adding boron to your garden soil, let’s take a closer look at what this element does for and to our plants. Boron (B) is a micronutrient. In the world of plant food, micronutrients are only used in tiny amounts, but they are very important to plant growth. The optimal range for boron found in a soil sample is 0.1-0.5 parts per million (ppm). The only way you can determine how much boron is in your soil is with a laboratory soil test. Take my word for it, it’s the best investment you can make in your garden, next to mulching. But back to boron. How do plants use boron? Boron is critical for cell wall development and function, making those cell walls both strong and porous. The plasma membrane that allows molecules of sugar, water, wastes, and gases to move in and out of a cell rely heavily on boron to function properly. Research has also shown that boron is used by plants to produce and transport sugars within the plant, in protein synthesis, seed and pollen grain development, pollen tube growth, and flower growth and retention. Boron also plays important roles in nitrogen metabolism and fixation, the accumulation of the chemicals that affect taste (phenols), and in root development. Boron, is most easily absorbed when soil pH is 5.5 to 7.5. First absorbed through root cells, boron then moves into the xylem, where it is taken to new leaves and shoots, or into the phloem, where it is taken to reproductive tissues, as well as vegetative tissues. Once boron is absorbed by a plant, it stays where it was placed. This is because boron is not a mobile plant nutrient. This is useful information because it means boron deficiencies will tend to show up in new growth before being seen in older leaves. Helping plants get the boron they need Boron is commonly leached out of the soil, leading to deficiencies, in areas with heavy rainfall. In drought-prone regions with very little rainfall, boron can build up in the soil, leading to potential toxicities. This is especially true for alkaline soil, or when too much fertilizer has been applied. [Just because a plant looks unhealthy does not mean it needs more food.] Nutrient imbalances can make it difficult for a plant to absorb the nutrients it needs, even when those nutrients are present in the soil. For example, too much potassium in the soil can interfere with a plant’s ability to absorb boron, along with several other important nutrients. [The optimal range for potassium is 100-160 ppm.] Calcium and boron ratios are also very important to plant health. We will take a closer look at a tool, called Mulder’s Chart, that shows how these interactions work, in my next post. For now, we will look at what too little or too much boron can do. Boron toxicity
Boron toxicity occurs when boron levels are at or above 1.8 ppm. Too much boron negatively impacts plant metabolism, and it reduces root and shoot development, chlorophyll production, rates of photosynthesis, and the lignin and suberin needed for structure and protection. Toxic levels of boron can often be identified by looking at plant leaves. Too much boron will appear as either necrosis (death) or chlorosis (yellowing) of leaf tips and edges (margins). These damaged areas are believed to occur because the overabundance of boron interferes with several life processes, all at the same time. Unfortunately, these are the same symptoms as caused by magnesium deficiencies. [Can you say laboratory soil test?] Adding extra boron is easy, when more is needed. Getting rid of excess boron requires more effort in the form of improved drainage through the addition of more organic material. Obviously, this takes time. Boron deficiency Insufficient or unavailable boron in the soil is the world’s most widespread micronutrient deficiency. It is a common problem in soils with low levels of organic matter (<1.5%). Boron deficiencies lead to reduced crop size and quality but symptoms can vary, depending on the crop:
Too much, too little, or no way for plants to get to the boron they need can all cause problems. Getting a laboratory soil test is the only way to know what’s eating your plants, or rather, what your plants are eating.
Chuck
12/31/2018 07:25:28 pm
I find this fascinating. I wish I had known it when I taught middle school science botany. Then when I got to the chemistry sections in the later part of year, I could have used B to review cell wall structure. Comments are closed.
|
Welcome!You can grow a surprising amount of food in your own yard. Ask me how! To help The Daily Garden grow, you may see affiliate ads sprouting up in various places.
You can also get my books, Stop Wasting Your Yard! and What's Growing Wrong? Index
All
Archives
February 2025
|