When we say soil is compacted, we are referring to all of it. When compaction occurs below the soil surface, it is called hardpan. When the problem is at the surface, we call it crusting. Healthy soil is lumpy. These lumps are called soil aggregates. Soil aggregates are made up of different sized minerals, bits of organic matter, and spaces, called macropores and micropores. Those spaces are critical to soil and plant health, as they provide pathways for air, water, and roots. When surface aggregates are broken into smaller and smaller bits, the soil particles shift around, dry out, and realign into a smooth, plate-like structure, called a crust. As that crust dries out even further, cracks commonly appear. These cracks are nearly always at 120° or 90° angles.
Physical crusts may be structural or depositional. Depositional crusts are the result of fine soil particles carried in runoff being deposited over an area. Structural physical crusts are more likely to occur in the home garden. Crusting is particularly common in clay soils because the particles are already so tiny. Flat clay particles average less than 2 μm and are attracted to one another by electrostatic forces. Silt is boxier and 2 to 50 μm, while sand particles are larger than 50 μm. Neither silt or sand particles are attracted to one another electrically. If your clay soil contains high levels of magnesium and/or sodium, the odds of soil crusting are even higher. [What does your soil test say?]
What causes structural crusting? Rototilling and rain are the two most common causes of crusting. Frequent digging or rototilling disrupts microorganism populations and breaks up soil aggregates. Those aggregates are needed to allow air and water to move through the soil. Soil microorganisms are partly responsible for maintaining those soil aggregates and for feeding many of your plants. As heavy rain (or sprinkler water) falls, each drop hits the topsoil and breaks up soil aggregates into smaller and smaller particles. These smaller particles are more prone to compaction and surface crusting. Problems with crusting Compacted soil makes it difficult for water, air, and roots to move through. It also slows soil gas exchanges and drainage. Crusty soil slows water infiltration and makes life very difficult for germinating seeds and young seedlings. In fact, crusting can stop germinating seeds from getting to sunlight altogether. Crusting also increases the chances of runoff and urban drool. If the soil below has reached its watering holding capacity, crusting can prevent evaporation, causing roots, worms, insects, and microbes to drown. Soil crusts are rather fragile. As they are damaged, they tend to break apart, allowing the soil to erode very quickly. [My Burner readers know what I mean. Pre-event, the Black Rock Desert crust is firm and dust levels are relatively low. As traffic picks up, the surface crust is damaged and dust storms can become rather impressive. For you non-Burners, just think of the Dust Bowl of the 1930s.] Correcting crusty soil Patches of crusting can be corrected by lightly breaking up the soil surface and planting cover crops, green manure crops, or cereal grains. You can also top dress the area with aged compost or manure, or reduce damage by mulching. How to prevent crusting Rather than rototilling or digging, use mulch to encourage worms and soil microorganisms to do the work for you. Also, after harvesting an area, cover it with straw, mulch, or a fast-growing cover crop to absorb rain droplets and prevent erosion and compaction. Comments are closed.
|
Welcome!You can grow a surprising amount of food in your own yard. Ask me how! To help The Daily Garden grow, you may see affiliate ads sprouting up in various places.
You can also get my book, Stop Wasting Your Yard! Index
All
Archives
October 2024
|