Your soil has a characteristic known as bulk density. Put simply, if you take a scoop of soil, it will weigh something. If you take a scoop of different soil, it will have a different weight. Those weights are a measure of the material held in that space. No surprise, right?
Also known as scoop density, this measurement tells you how tightly your soil is crammed into a space. It also tells you a lot about your soil’s permeability (ability to drain), infiltration (rate of drainage), porosity (the number of macropores and micropores), soil texture (sand, silt, and clay), and soil structure. This is important information for plant roots. Another non-surprise: soil is heavy. The weight of the top soil pushes down on the soil below it. That layer pushes down on the layer below that, and so on. This means that soil becomes more and more dense, the deeper you go. This is one reason why so many plants keep their roots near the soil surface. What’s normal? Bulk density is measured in grams per cubic centimeter (g/cc). Bulk density generally ranges from 1.0 to 1.25 g/cc. Sandy soil tends to have high bulk densities (1.3-1.7 g/cc), while clays and silts normally have moderate densities (1.1-1.6 g/cc). Soils that contain more organic matter tend to have lower bulk density values. Lower bulk densities allow for proper drainage, reducing the chance of fungal disease and helping plants overcome the negative effects of mud and drought. Too much stuff If a soil’s bulk density is higher than 1.6 g/cc, your plants are going to have a hard time. Compacted soil restricts the free movement of roots, air, and water. High bulk densities can also prevent germinating seeds from making it to the surface with enough energy to thrive. What is your soil’s bulk density? The USDA provides instructions for a DIY bulk density test, but I have to warn you, your kitchen will stink after you bake or microwave a soil sample. A far easier and more pleasant method is to send a sample to a lab. For the price of a bag of fertilizer, your can learn a lot of good stuff about your soil. Soil tests tell you about nutrient levels, the cation exchange capacity, pH, and base saturation numbers, along with bulk density. Case in point In 2015, my soil’s bulk density was 1.18 g/cc. By 2019, it had changed to 0.95 g/cc. What happened? In 2015, my soil test indicated an extreme overabundance of every nutrient, except iron, and compacted clay. [The over-fertilizing was done by the previous owner.] To counteract the compaction and the lack of iron (a nutrient needed by plants to help them consume other nutrients), I applied foliar sprays of chelated iron and mulched the heck out of every soil surface with aged compost and chicken bedding. The iron sprays allowed my plants to make use of and extract the abundant nutrients, bringing them closer to normal, balanced levels. The composted manure and other organic materials created more spaces between soil particles, making it easier for roots, gases, and water to move around. Four years later, all of my plants are growing better and my soil organic matter (SOM) levels went from 3.5% to 7.6%. If your soil is too dense, your plants can’t thrive. If you know your soil’s bulk density, you can take action to improve it. Have you ever noticed how the larger bits come to the surface when you shake a container of soil? This is called the Brazil nut effect. I have no idea why. 7/20/2023 09:33:10 pm
Great article. I needed this to work out if my Nissan Navara can take a load of topsoil to my new home/studio. It can - but there'll be a few trips bfore I'll have my 20m3 of soil on site!!
Kate Russell
7/21/2023 09:35:01 am
Hi, Matt - glad you enjoyed it! 11/2/2023 09:32:10 pm
Quick update Comments are closed.
|
Welcome!You can grow a surprising amount of food in your own yard. Ask me how! To help The Daily Garden grow, you may see affiliate ads sprouting up in various places.
You can also get my books, Stop Wasting Your Yard! and What's Growing Wrong? Index
All
Archives
February 2025
|